Ion-pulling simulations provide insights into the mechanisms of channel opening of the skeletal muscle ryanodine receptor.

نویسندگان

  • David D Mowrey
  • Le Xu
  • Yingwu Mei
  • Daniel A Pasek
  • Gerhard Meissner
  • Nikolay V Dokholyan
چکیده

The type 1 ryanodine receptor (RyR1) mediates Ca2+ release from the sarcoplasmic reticulum to initiate skeletal muscle contraction and is associated with muscle diseases, malignant hyperthermia, and central core disease. To better understand RyR1 channel function, we investigated the molecular mechanisms of channel gating and ion permeation. An adequate model of channel gating requires accurate, high-resolution models of both open and closed states of the channel. To this end, we generated an open-channel RyR1 model using molecular simulations to pull Ca2+ through the pore constriction site of a closed-channel RyR1 structure determined at 3.8-Å resolution. Importantly, we find that our open-channel model is consistent with the RyR1 and cardiac RyR (RyR2) open-channel structures reported while this paper was in preparation. Both our model and the published structures show similar rotation of the upper portion of the pore-lining S6 helix away from the 4-fold channel axis and twisting of Ile-4937 at the channel constriction site out of the channel pore. These motions result in a minimum open-channel pore radius of ∼3 Å formed by Gln-4933, rather than Ile-4937 in the closed-channel structure. We also present functional support for our model by mutations around the closed- and open-channel constriction sites (Gln-4933 and Ile-4937). Our results indicate that use of ion-pulling simulations produces a RyR1 open-channel model, which can provide insights into the mechanisms of channel opening complementing those from the structural data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Structural Model of the Pore-Forming Region of the Skeletal Muscle Ryanodine Receptor (RyR1)

Ryanodine receptors (RyRs) are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1) give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level...

متن کامل

Physiology of nitric oxide in skeletal muscle.

In the past five years, skeletal muscle has emerged as a paradigm of "nitric oxide" (NO) function and redox-related signaling in biology. All major nitric oxide synthase (NOS) isoforms, including a muscle-specific splice variant of neuronal-type (n) NOS, are expressed in skeletal muscles of all mammals. Expression and localization of NOS isoforms are dependent on age and developmental stage, in...

متن کامل

Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.

Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucle...

متن کامل

Critical Role of Intracellular RyR1 Calcium Release Channels in Skeletal Muscle Function and Disease

The skeletal muscle Ca(2+) release channel, also known as ryanodine receptor type 1 (RyR1), is the largest ion channel protein known and is crucial for effective skeletal muscle contractile activation. RyR1 function is controlled by Cav1.1, a voltage gated Ca(2+) channel that works mainly as a voltage sensor for RyR1 activity during skeletal muscle contraction and is also fine-tuned by Ca(2+), ...

متن کامل

Functional Characterization of the Cardiac Ryanodine Receptor Pore-Forming Region

Ryanodine receptors are homotetrameric intracellular calcium release channels. The efficiency of these channels is underpinned by exceptional rates of cation translocation through the open channel and this is achieved at the expense of the high degree of selectivity characteristic of many other types of channel. Crystallization of prokaryotic potassium channels has provided insights into the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 292 31  شماره 

صفحات  -

تاریخ انتشار 2017